Pneumatic artificial muscles based on biomechanical characteristics of human muscles
نویسندگان
چکیده
منابع مشابه
Pneumatic Artificial Muscles
This paper reports mechanical tasting and modeling results for the McKibben artificial muscle pneumatic actuator. This device, first developed in the 1950’s, contains an expanding tube surrounded by braided cords. We report static and dynamic length-tension testing results and derive a linearized model of these properties for three different models. The results are brieffy compared with human m...
متن کاملMcKibben Artificial Muscles: Pneumatic Actuators with Biomechanical Intelligence
This paper reports on the design of a biorobotic actuator. Biological requirements are developed from published reports in the muscle physiology literature whose parameters are extracted and applied in the form of the Hill muscle model. Data from several vertebrate species (rat, frog, cat, and human) are used to evaluate the performance of a McKibben pneumatic actuator. The experimental results...
متن کاملStatic Force Model of Pneumatic Artificial Muscles
Pneumatic actuators convert pneumatic energy into mechanical motion. This motion can be linear or rotary. Linear motion is feasible with pneumatic cylinders (e. g. single-acting cylinder, double-acting cylinder, rodless cylinder) and pneumatic artificial muscles (PAMs). Pneumatic artificial muscle is the newest and most promising type of pneumatic actuators. PAM is a membrane that expands radia...
متن کاملRobust Control Law for Pneumatic Artificial Muscles
This paper presents a modified integral sliding surface, sliding mode control law for pneumatic artificial muscles. The cutoff frequency tuning parameter λ is squared to increase the gradient from absement (integral of position) to position and higher derivatives to reflect the more dominant terms in the actuator dynamics. The sliding mode controller is coupled with proportional and integral ac...
متن کاملPleated pneumatic artificial muscles: compliant robotic actuators
Pleated pneumatic artificial muscles (PPAMs), which have recently been developed at the Vrije Universiteit Brussel, Department of Mechanical Engineering are brought forward as robotic actuators in this paper. Their distinguishing feature is their pleated design, as a result of which their contraction forces and maximum displacement are very high compared to other pneumatic artificial muscles. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Bionics and Biomechanics
سال: 2006
ISSN: 1176-2322,1754-2103
DOI: 10.1533/abbi.2006.0028